
981 

Acta Cryst. (1959). 12, 981 

Regress ion  Formulae  and the Joint Distr ibut ion of Structure Factors  

BY PmLre  A. VAUG~AN 

Rutgers, The State University of New Jersey, _New Brunswick, _New Jersey, U.S .A.  

( R e c e i v e d  2 October  1957 a n d  i n  r e v i s e d  f o r m  10 N o v e m b e r  1958) 

The joint distribution (frequency) function of a set of structure factors can be obtained as an ex- 
pansion in terms of a general set of orthogonal polynomials. The series given by Hauptman & Karle 
and also by Bertaut is a particular example of such an expansion. The question is considered from 
the standpoint of regression formulae and it is shown that  the (terminated) sign-determining series 
of Hauptman & Earle  does not represent a least-squares regression formula. A method of obtaining 
improved regression formulae is considered and illustrated in the case of space group PY. A numerical 
example is presented for a synthetic structure. 

H a u p t m a n  & Kar le  (1953) have  proposed a method  
of determining the signs of s tructure factors which is 
based on the theory  of probabili t ies.  Specifically, 
they  assume tha t  the atomic coordinates are random 
variables  which are uni formly  dis t r ibuted between 0 
and  1 (for general positions). They then  proceed to 
derive formulae for the  joint  dis t r ibut ion of a group 
of structure factors and show how this joint  distribu- 
t ion forms the basis of a method  of sign determinat ion.  
Ber tau t  (1955a, b) has also derived the joint  distribu- 
t ion by  a method  which is similar  to tha t  of Haupt-  
m a n  & Kar le  and which can be expected to give 
identical  results provided the same terms are kept  in 
the te rmina ted  series. 

In  this  discussion a general formula for the joint  
dis t r ibut ion of normalized structure factors is given 
and  it is pointed out tha t  H a u p t m a n  & Karle ' s  result  
is a special case. The question as to the best s tat ist ical  
means  of phase de terminat ion  will then  be considered 
from the s tandpoint  of regression formulae. I t  turns  
out tha t  H a u p t m a n  & Karle ' s  results for the joint  
dis t r ibut ion do not  in general yield the best (least- 
squares) regression formulae. This is because of the 
lack of orthogonali ty of the individual  terms in their  
expansion.  A discussion of regression formulae which 
can be used to es t imate  EH (h, k, 1 even) in space group 
P 1  is given. 

One method  of invest igat ing this problem is by  the 
method  of orthogonal polynomials  (see Cramer, 1946, 
for a discussion of one-dimensional  orthogonal poly- 
nomials).  A form of expansion of a funct ion 
g(xl, x 2 , . . . ,  x~) of n variables in terms of one- 
dimensional  orthogonal polynomials  is given by  

g(x~, . . . ,  x~) = xA ~ C~, .... k~II pj,~j(xj) , 
] k 1 . . . . .  k n ]= 1 

=o (1) 

in which the subscripts kl, . . . ,  k~ give the orders of 
the polynomials  p/, kj(x/), v = total  order = k~ + . . .  + k~, 
and 

f I P(~) = g(x~, xn) I l  pj, kj(xj)dxj (2) 
V k l '  " " " ' k n  - - o o  . . . . . .  ' i=1 

The last  equat ion follows from the or thonormal i ty  of 
each set of polynomials  pj, kj(xj) with respect to the 
corresponding weight functions f i  (xj); tha t  is 

f l p j ,  kj(xj)pj, zi(xj)fj(xj)dxj= ~k/~j ( j= 1, . . . ,  n) .  (3) 

The conditions on the f j  (xj) which make  it  possible to 
determine the set of polynomials  pj, ~j (xj) are discussed 
by  Cramer (1946) and Szeg5 (1939). The interval  of 
integrat ion need not  be infinite,  as in (2) and (3). 
I t  is also clear tha t  orthogonal polynomials  m a y  be 
found which are functions of all n variables.  In  this 
case, the n-dimensional  weight funct ion can not  gener- 
al ly be factored, as in (1). 

Equat ions  (1) and (2) can be used to obtain any  
number  of formal  expansions of the joint  dis t r ibut ion 
function. The funct ion g(xl, . . . ,  xn) is replaced by  the 
required joint  dis t r ibut ion (frequency) funct ion 

P(AH1, . . . ,  AH~) 

for the normalized structure factors Enl ,  . - . ,  EH~. 
Then (2) can be wri t ten 

• ~t E , c(g! . ,~ = I /p j ,~ j (~ j )  (4) 
j = l  

in which the bar  indicates averaging over all a tomic 
coordinates. Following H a u p t m a n  & Kar le  (1953), we 
assume tha t  the atomic coordinates are uni formly  
dis t r ibuted in the interval  0 to 1. The functions 
fj(AHj) can be any  functions for which orthogonal 
polynomials  can be found. 

In  part icular ,  if 
1 

---- ~AHj  ] , f j ( A . j )  ~ exp [_1  2 

the  orthogonal polynomials  are the or thonormal  Her- 
mite  polynomials,  
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(~.~)½ H~(Ar~?.). 

We then obtain 

P ( A H ~ ,  . . . ,  AH,~) = (2g) -½~/1 
~=1 

~ . . . . .  ~ ~ ?'=1 ~ H~?'(A~j) , 
=0 (5) 

which is identical with Bertaut 's  (1955b) equation 
(III-1).  Many equations similar to (5) can be obtained 
simply by choosing different functions fi(An~). The 
question arises, which is best? One possible answer 
can be found by considering regression formulae. 

R e g r e s s i o n  f o r m u l a e  

Regression curves and formulae are discussed in 
standard treatises on statistics (Cramer, 1946). If we 
have a group of random variables y~, . . . ,  y~, then the 
regression surface for yl is the locus of the mean value 
of y~ subject to the conditions y e = x 2 , . . . ,  y ~ = x n ;  
tha t  is, the equation 

x~ = m ~  (x~., . . . ,  xn)  = xlP' (xi; x2, . . . ,  x ~ )  dx~; (6) 
- -00 

in which P ( x ~ ,  . . . ,  xn)  is the joint probabihty distri- 
bution function for y~, . . . ,  y~, is the required regres- 
sion formula. This gives the least-squares estimate of 
yx, subject to the conditions y 2 = x 2 ,  . . . ,  y n = x n .  Let 
us find the regression formula for the case in which 
P ( x l ,  . . . ,  x,~) is given by an expansion in orthogonal 
polynomials, as in equation (1): 

m l  ( x 2 ,  . • . ,  ~gn) 
n o o  n 

= x ~ p ~ , ~ ( x l ) I l f i ( x j )  ~ C(x:)k~ . . . . .  k , , H P j ,  k j ( x j ) ,  (7) 
~ = 2  k2 . . . . .  k n  ? '=2 

= 0  
in which 

c t %  ..... ~=p~,~(x~)/}pj ,~j(xj) .  
~=2 

This equation follows from the fact tha t  x ~ p i , ~  (x~i = 0  
for k #  1 if x~ has a mean value of zero (which is as- 
sumed). In the crystallographic application, x~ can be 
a normahzed structure factor or an origin-invariant 
combination of structure factors reduced to a mean 
value of zero. The x ~ ( j = i ~ , . . . ,  n)  can be either EH~ 
or (E~?'-1). If (7) is used for sign determination, the 
sign of m d x ~ ,  . . . ,  xn)  will depend only on the sum of 
polynomials if the functions fi  (x¢) are symmetric. The 
Gaussian functions which appear in Hauptman & 
Karle's (1953) t reatment  are, of course, symmetric. 

The difficulty of (7) is that,  although it will provide 
the best (least squares) estimate of y~ if x~ (j = 2 . . . .  , n) 
are given, the speed of convergence of the series of 
polynomials will be dependent on the particular weight 
functions f i ( x~ )  which are chosen. I t  has not been 

demonstrated tha t  Gaussian functions are particularly 
advantageous. 

Let us take another approach and assume a re- 
gression formula to estimate x, as a function of a set 
of observables xj ( j =  1, . . . ,  n), of the type 

x ,~ ~ C~')I, . . . .  k,~ PtY)~, . . . .  kn(Xl,  . . . ,  X n )  , (8) 
k l ,  . . . ,  kn  

= 0  

in which the P~), .... ~ are polynomials of total  order 
v = k l  + . . .  + kn,  and C(k~ ), .... k~ are constants to be de- 
termined. We assume that  all possible, linearly in- 
dependent, polynomials of total  order equal to or less 
than m are included in the summation. Thus, there 
will be (v + n -  1 ) ! /v ! (n-  1)! linearly independent poly- 
nomials of total order v and a total  of ( n + m ) ! / n ! m !  
polynomials on the right side of (8). 

We will assume best constants C~ o, .... kn are given 
by the least-squares principle; tha t  is, we minimize 
the mean square difference between the left and right 
sides of (8). Straightforward minimization gives the 
set of equations 

v t ~ m  

k'1, . . . ,  k" n 
-.~0 

× Pi2, .... a ( x . . . . ,  ~.)Pill) .... ~ : , . ( x . . . . .  x.) 

=xP~Y)l . . . . .  ~ (x l ,  . . . ,  xn) , (9) 

in which the bar indicates mean value. Ordinarily, 
one would have to solve this set of simultaneous linear 
equations in order to determine the constants C~.~ ), .... k,. 
However, if the polynomials are orthonormal with 
respect to a weight function which is the joint prob- 
ability distribution function of the variables xj 
( j =  1, . . . ,  n), then (9) becomes 

C~), . . . ,  ~n-xP~Y~. - , . . . , k~ (x~ ,  • • • , xn) , (10) 
since 

P(;), . ,~  (xl, . .  x ~P(~') • . • , n J  k ' x  . . . . .  k ' n ( X l ,  "'',Xn) 
= (5kl ~'1. • • ~ k'~ 

in this case. The regression formula (8) then becomes 

~ m  

x "~ ~ ,  xP(k]! . . . .  kn(Xl . . . .  ,x~)P([)l,  . . . .  ~n(Xl, . . . , x , , ) .  
k l  . . . . .  kn  

=0 (11) 

The similarity between (11) and the summation on 
the right side of (7) is obvious since Pl,l(xl) is equal 
to a constant times xl (since the mean of xl is zero). 
Equat ion (11) is more general since the functions 
P(kl ), . . . .  kn @1, • • . ,  x , )  cannot necessarily be factored, 
as in (7). The situation is now clear. If (7) is used 
w i t h  a f i n i t e  n u m b e r  o f  t e rms ,  it will not generally prove 
to be a satisfactory regression formula since the poly- 
nomials p/.,~i(xi) (or their products) are not ortho- 
gonal with respect to the joint probability distribution 
function. In particular, the Hermite polynomials and 
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their products are not orthogonal with respect to the 
joint probability distribution function of a set of 
normalized structure factors. Therefore, we can ex- 
pect that  it is possible to develop more powerful 
equations than those presented by Hauptman & Karle 
for the purpose of phase determination by starting 
with equation (8) and using the least-squares principle 
to determine the constants. 

We must first discuss briefly what to use for the 
quantities xj in crystallographic applications. At the 
beginning of a structure determination, no signs have 
been determined and we use the observed values of 
[(EHjIe--1), which fulfill the requirement of having 
mean values of zero (we will assume, for convenience, 
that  there are no atoms in special positions; ap- 
propriate modifications can be made in case this con- 
dition does not exist). In the event that  some phases 
have been determined (by statistical means, by in- 
equalities, or by structural requirements), the cor- 
responding values of EHi could presumably be used 
with advantage. We shall not, however, consider this 
more complicated situation. We shall assume that  the 
quantities ([EHjl 2 -1)  are to be used to estimate some 
origin-invariant product of normalized structure fac- 
tors, reduced to mean value of zero, which we shall 
call G. For example, we might have 

G --~ E H 1  E H 2  E _ H I _ H 2  - -  E H 1  EH2  E _ H I _ H 2  • 

(For non-centrosymmetric structures, we may have 
to consider G + G*, in which G* refers to the inverted 
structure). 

One possible method of procedure would be to 
construct a set of orthonormal polynomials from the 
set ([EHjl 2 -  1). This can always be done, for example, 
by the Schmidt method (SIargenau & Murphy, 1943), 
since all of the moments of these quantities can be 
computed. Nevertheless, this is a difficult procedure 
and we will begin with the equivalent procedure of 
writing (8) in the form of a power series; that  is put 

P?l ), .... ~(x~, . . . ,  x ~ ) = x ~ . . . z ~  

and (8) becomes, on writing G for x and ([EHj[ 2 -  1) 
for xj: 

~ m  
G ~ ,X C~I ), .... kn(IEH,I~--I)~I...(IEH=I2--1) ~=. (12) 

kl, . . . , / tn  
=0 

The constants C[~ ), .... k= can be determined by solving 
equations (9). This also is a rather impractical proce- 
dure and in order to obtain useful results without 
excessive labor, we will make the following approx- 
imations : 

(i) All terms will be omitted from (12) for which 
the covariarmes 

G ([EHxl ~ -  1 ) k ~ . .  (IEH~I 2 -- 1)k~ 
are zero. 

(ii) All terms which have a common value for the 
above covariance have the same coefficient in (12). 

These approximations result in a great reduction in 
the number of coefficients to be determined although 
there is some loss in accuracy of the final results. 

Regress ion formulae  for EH in space group P1 

As an example, and to illustrate the suggested re- 
gression calculation, all terms (v < 3) which give non- 
zero covariance with EH(h, k, 1 all even) in space 
group P1 are listed in Table 1, along with their co- 
variances (with EH) and variances for the case of N 
equal atoms per unit cell. The latter quantities (and 
similar quantities which will be used later) have also 
been obtained for the case of unequal point atoms; 
they are polynomials of the quantities 

A T A" 

s n = ~  g7 (EH---- 2" gjexp [2~iH • rj]) ,  
1 1 

and in some cases are quite lengthy. The regression 
formula using these terms would be 

EH ~ .~ C j T ~ ,  (13) 
J 

in which T~ are the quantities listed in the second 
column of Table I. The coefficients C¢ would be found 
by solving the equations 

z CjT~T~)=E.~7,). (14) 
J 

This is still a rather formidable task but it is within 
the range of modern electronic computers. 

Some approximations have been made in evaluating 
the variances and covariances listed in Table 1. It will 
be noticed that some of the terms listed contain others 
as special members. For example, term 3(i) is the mem- 
ber of 3(e) for which K= ½H. For theoretical purposes, 
such members can be considered as omitted from the 
terms which are sums. Furthermore, the member for 
which K= 0 is not included in these sums. The vari- 
ances of the sum terms 

TH =2tn, x 
K 

have been evaluated from the relation 

K K K1, K2 

"~ nz:~,K+nx(nx--1)tri ,  K1 tH, X~. (15) 

The average trI,Ki tH, K~. has been evaluated for general 
values of K1 and K2. For some particular values of 
K1 and K~., for example if Kg=½K1, this quantity is 
sometimes different from that  given in Table 1. The 
resulting additional contributions to T~ have been 
neglected. I t  will be noted that  the second term in (15) 
is, in general, not small compared to the first; this 
illustrates the non-orthogonality of the members of 
these sums. 
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I t  is possible to gain some idea of the reliability of 
(13) by assuming that  

E H -  Z Cj T~ 
J 

has a Gaussian distribution. We first note tha t  

a 2 = ( E ~ - ~  " Cj T~)2= 1 - _  F CjE~IT~. (16) 
] J 

Then it follows from the assumption of a Gaussian 
distribution that 

P+ = ½ + ~ tanh (,EH ~ C~ ~}I/ a ~) (17) 
/ 

is the probability that E H and 

..S C, T ~  
J 

have the same sign. 
I t  is obvious tha t  regrcssion formulae can be ob- 

tained from any single term in Table 1 or any group 
of terms. If a single term is used, we have 

EH .~ (EHTH/T~) TH , (18) 
and 

ag= I-- (EHTH)e/T~ . (19) 

Thus, the numerical values of (EHTH)2/T~ provide 
an initial estimate of the relative importance of the 
various terms in Table 1 in determining the sign of E H. 

Four of the terms listed in Table 1 have non-zero 
mean values. These are 

2(a)=2- (3 /N)  , 

3(d) = nK[(4/N) -- (7/N2)], 

3(h) = 8 - ( 3 6 / N )  + (40/N2), 

3(j) = ( 6 / N ) -  (1 l /N2) .  (20) 

If any of these terms are used in a regression calcula- 
tion, the corresponding mean values should be sub- 
t racted from them in applying equations (13) and (14). 

Tables similar to 1 can be obtained for other 
invariants of space group P1 and for invariants of 
other space groups. In fact, a regression formula for 
determining the phase (or sign) of EH1EmErtl_rI~ 
for space groups P1 and P1 has already been presented 
(Vaughan, 1958). Extension can also be made to any 
desired order. However, the evaluation of the co- 
variances and variances, as well as the solution of the 
resulting set of linear equations, becomes increasingly 
more difficult. A means of finding terms which give 
non-zero eovariance with any invariant  of any space 
group will be discussed in a later communication. 
Ber taut  (1955) has given a discussion which applies 
to this problem. 

A numerical example 
To show how a regression formula can be obtained 
from the terms listed in Table 1, and to demonstrate 

the possible uti l i ty of such an equation for sign deter- 
mination, a numerical test  has been made with a 
synthetic structure. A two-dimensional structure was 
considered with eight equal atoms at  the positions 

_+ (x, y)=(0.162,  0-389), (0.307, 0.233), 

(0.568, 0.214), (0.794, 0.418). 

In constructing regression formulae, only terms 
l(a), 2(b), 2(c), 3(b), 3(e), and 3(g) in Table 1 were used. 
The principal reason for disregarding terms was, of 
course, to keep the calculations within reasonable 
limits. In  selecting these particular terms, considera- 
tion was given to the expected magnitudes of 
(EHTH)2/T~; also, terms were omitted which seemed 
to be only higher orders of terms which were included. 
I t  is admit ted tha t  the best choice of terms may  not 
have been made. In  carrying out the calculations, it 
was assumed tha t  all values of (IEHI e -  1) were known 
within the limitations [hi _< 10, [kl _< 10. 

In order to construct regression formulae it was 
necessary to evaluate the covariances between the six 
terms which were used. These were computed from 
the following equations" 

l(a)2(b) = [1/N][6-( l l /N)]  

l(a)2(c) = [nK/N][4-(7/N)] 

l(a)3(b) = [nK/N2][12-(23/N)] 

l(a)3(e) = [nK/N2][IO--(19/N)] 

l(a)3(g) = [2nK/N2][1-(2/N)] 

2(b)2(c) = [nx/N2][lO-(19/N)] 

2(b)3(b) = [nK/N][8+(22/N)-(259/N2)+(368/N3)] 

2(b)3(ei = [nK/N ~] [72--(364/N) + (440/N9)] 

2(c)3(b) = [nln~/Na][20-(39/N)] 
+ [n+/N] [ 1 8 - ( 1 0 / N ) -  (59/N 2) + (96/N8)] 

+ [n~2/N3] [32-- (63/N)] 

2(c)3(e) = [nln2/N3][18-(36/N)] 
+ [n+/N] [ 1 2 - ( 4 0 / N ) +  (33/N2)] 
+ [n~/N] [8 + ( 2 2 / N ) -  (223/N 2) + (296/Na)] 

2(c)3(g) = [nlne/N3][4-(8/N)] 
+ [nS/N 2] [ 4 8 -  (236/N)+ (280/N2)] 

3(b)3(e) = [nlndN3][8+(12/N)--(55/N2)] 
+ [n+/N 2 ] [24 + ( 4 2 / N ) -  (611/N 2) + (864/N3)] 

+ [n-~/N 2] [16 + ( 9 0 / N ) -  (711/N e) + (936/N~)] 

3(b)3(g) = [nln2/NS][144 - (748/N)+ (920/N2)] 
+ [n~2/N 2 ] [ 1 2 8 - ( 4 8 0 / N ) -  (360/N 2) + (1616/N8)] 

3(e)3(g) = [nln2/N3][8-(28/N)+(24/N2)] 
+ [uS~N] [32 - ( 8 / N ) -  (1148/N 2) 
+ (3864/N 3) - (3584/N4)]. (21) 
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I n  th is  t abu l a t i on ,  nK, nl, a n d  ns s t and  for the  n u m b e r  
of members  in  a sum te rm,  the  l a t t e r  two being used 
for the  cases in which  two  sum te rms  are involved .  
The  symbols  n +, ni~, and  n ~  refer  to  the  n u m b e r  of 
cases for  which  K1 = Ks, K1-- - K 2 ,  and  K1 = _+ Ks, in  
a double  s u m m a t i o n  over  K1 a n d  K2; these  were the  
on ly  special  t e rms  which  were considered.  Again,  
a p p r o x i m a t i o n s  s imilar  to  those  descr ibed in connec- 
t i on  wi th  Table  1 were used. 

Since t he  n u m b e r  of t e rms  which  are used to com- 
pu t e  the  t e rms  2(c), 3(b), 3(e), and  3(g) en te r  in to  the  
d e t e r m i n a t i o n  of the  coefficients in  a regression for- 
mula ,  one would  idea l ly  have  to  compu te  d i f ferent  
coefficients for  a lmos t  eve ry  H for which  one wished 
to  de t e rmine  a sign. However ,  for a n y  g iven  set of 
s t ruc tu re  fac tors  these  number s  v a r y  wi th in  r a t h e r  
res t r ic ted  l imits ,  and  only  two sets of coefficients were 
ac tua l l y  de t e rmined  in  th is  numer i ca l  example .  The  
cases to which  these  coefficients app ly  are def ined in 
the  fol lowing way.  

Case (1): nx for 2(c) > 163, nK for 3(5) > 114 

Case (2): nK for 2(c) < 163, ng  for 3(b) < 114 .  

I t  is to  be n o t e d  t h a t  nK for 3(g) is a lways  one less t h a n  
nK for 3(b), and  nK for 3(e) is i n v a r i a b l y  119. The  
number s  nK which  were ac tua l l y  used to  compu te  the  
coefficients for  these two cases were the  average  
values  t a k e n  over  all H for which  the  cor responding  
inequal i t ies  are satisfied, and  for which  IEH[ > 1.00. 
Thus,  the  fol lowing number s  were used. 

Case (1): nK for 2 (c )=178 ,  ng for 3 (b)=139 ,  

nK for 3(e )=  119, nK for 3(g)=  138 

Case (2): nK for 2 (c )=152 ,  nK for 3 (b )=96 ,  

nK for 3(e)=  119, nK for 3 (g )=95 .  

The  values  for n +, ni~, and  n ~  were e s t ima t ed  aver- 
ages. E q u a t i o n s  (14) were solved for each of these  two 
cases. 

Case (1): ZH = 1.048 [l  (a)] -- 0.1337 [2 (b ) ] -  0-0214712(c)] 

+ 0.004136 [3(b)] ÷ 0.009297 [3( e)] ÷ 0-005094 [3(g)] 

a ~ = 0 .622 .  

Case (2): ZH = 0"9256 [1 (a)] -- 0-06482 [2(5)] 

--0"02237 [2(c)] + 0"005204 [3(b)] ÷ 0.01037 [3(e)] 

+ 0.003525 [3(g)] 

a 2 = 0 .657 .  

These  equa t ions  give Xu, a leas t -squares  e s t ima te  
(approx imate ly )  of E H wi th  va r i ance  a 2. These equa-  
t ions  were used to  compu te  XH for all  H such t h a t  
]EH[ _> 0.5. The  resul ts  for all cases for  which  [En] >__ 1.0 
are g iven  in Table  2. Co lumn 10 in Table  2 gives t he  
resul ts  of t he  app l i ca t ion  of equa t ion  (17), and  gives 
the  (approx imate )  probabi l i t ies  (P+) t h a t  Z u  a n d  EH 
have  the  same sign. I t  will be n o t e d  t h a t  in  e ight  
cases P+  is g rea te r  t h a n  0.95, and  in the  on ly  case 
of an  incor rec t  sign d e t e r m i n a t i o n  (8,8) P+ is on ly  
0-61. There  are, of course, a n u m b e r  of examples  for  
which  sign de t e rmina t i ons  would  have  to  be con- 
s idered unre l iab le  because of low values  of P+.  I n  
on ly  one case (0,10) was a sign re l iab ly  d e t e r m i n e d  
for which  0.5 _< ]EHI < 1-0; in  all o the r  examples  in 
th is  ca tegory  P+  was less t h a n  0.8, a l t h o u g h  the  sign 
of ZH was the  same as t h a t  of E u in  twelve  out  of 
seven teen  cases. I n  none  of the  four t een  cases for  
which  P+ > 0.7 was the  sign of EH incor rec t ly  deter-  
mined  by  2:H. A l though  these  resul ts  m a y  well be 
p a r t l y  for tu i tous ,  t h e y  do p rov ide  some evidence  t h a t  
t he  s ix- term regression fo rmula  is useful  a n d  t h a t  t he  
es t imates  of P+ are r ea sonab ly  conservat ive .  

I t  is of in te res t  to  compare  the  resul ts  ob t a ined  wi th  
the  s ix- term regression fo rmula  wi th  o ther  m e t h o d s  of 
sign de te rmina t ion .  Kar le ,  H a u p t m a n ,  Kar l e  & W i n g  

2 (1958) have  used EH/2-1 to  de t e rmine  the  sign of E H. 

The regression fo rmula  ob t a ined  wi th  th is  one t e rm  is 

E H ~  .N½(2N-3) - l (E~12-1)  , (22) 
wi th  

Table  2. Sign determinations with six-term regression formula 

Terms in regression formula P+ (product) 

h,lc "l(a) 2(b) 2(c) 3(b) 3(e) 3(g)" z~H EH EH~:H ~TH[ (a; Caso 

4,10 --0-99 --4.66 --23.3 --80.1 --14.9 -- 6.8 --0.69 --2-39 0.993 0.75 2 
8,2 +0.66 +2-59 + 9-1 +66.7 +16-4 +24-2 +0-71 +2.22 0.993 0.67 1 
8,0 --0.99 --2.92 --22.4 --89.4 --19.2 +12.8 --0.65 --1-99 0.985 0.72 1 
2,6 --0'99 --2'58 --55.4 --55'4 430'0 --36'6 +0.36 +1.90 0.901 0.71 1 
4,10 +0.55 +1.20 -- 8.2 +28-4 +15.8 +13.6 +0.97 +1.79 0.995 0.61 2 
0,6 --0.89 --1.83 -- 7.9 --59.1 +15.5 +10.2 --0-57 --1-78 0-964 0-68 1 
8,6 +0.58 +1.09 +20.3 +18.6 -- 5.4 -- 2.6 +0.05 +1.70 0-56 0.61 2 

10,6 --1.00 --1.88 --12.4 --27.1 --13.2 +27-1 --0.71 --1.70 0.975 0.69 2 
6,8 +0.25 +0"30 -- 2.2 + 7"6 +23.1 +16-3 +0.14 +1.49 0"65 0-54 2 
4,4 --0"99 --1-18 --44.9 --37.4 +37.4 --15.5 +0.20 +1.48 0-72 0.67 1 
4,8 --0-93 --1-06 --11.9 --29"2 --16.8 + 2-0 --0"85 --1-46 0.977 0-66 2 

10,4 +0-45 +0.36 +11.8 + 7.9 +17.3 +12.2 +0.40 +1.35 0-88 0-57 2 
8,4 --0"70 --0"50 -- 3"8 --18.0 +15.6 +21.7 --0.40 --1.31 0-87 0-61 2 
6,4 --1.00 --0.70 --27.5 -- 1"9 +18.6 +13-3 --0.13 --1-30 0-63 0.65 1 
8,8 +1.19 +0-39 +37"8 +15.3 -- 2.3 --44.4 +0.13 --1.16 0.61 0-66 2 
6,2 --0.91 --0"15 --30"0 +19.3 +21.9 +23-3 +0-12 +1.08 0-60 0"61 1 
0,10 +4.12 --0.37 +113.1 --43.0 --39"4 --26-7 +1.26 +0.96 0.980 0"87 1 
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a 2 = ( 2 N - 4 ) / ( 2 N - 3 ) = 0 . 9 2 3  for N----8. (23) 

Equation (17) would then become 

p + = ½ + l t a n h  (IEH(E2/2 -1)[ /[N½(2-(4/N))]}  , (24) 

which is the same as the formula of Cochran & Woolf- 
son (1955) if the term 4IN is omitted. This term should, 
of course, be included since P + =  1 exactly for N = 2 .  
The results of applying (24) to the numerical example 
described above are given in column 11 of Table 2. 
The improvement obtained by using the six-term 
formulae is seen to be considerable. I t  should, of 
course, be remembered that  the joint distribution of 
EH and E ~ / 2 - 1  is not very close to being Gaussian. 
Thus, the estimates obtained from (24) are probably 
rather crude. We note, for example, that  the sign of 
E0,10 is actually positive with probability 1 because 
of the Harker-Kasper inequality UH >-- 2U~/2--1. 
Within the limitations ]hi _< 10, I/el _< 10, the signs of 
only E0,10 and El0, ~ can be determined to be positive 
with this inequality. 

Another interesting formula is that  due to Cochran 
(1954), 

EH=N½[2(E~/2--1)--N(E~H/2)_K--1)(E~-- I)K] , (25) 

in which the bar indicates averaging over K. This 
equation is valid if all the K vectors are included in 
computing this average. An equation resembling (25) 
can be obtained by considering a two-term regression 
formula (see Table 1), 

En ~ C1[1(a)]+C212(c)] . (26) 

The values of C1 and C2 determined by least-squares 
minimization are 

C~ (2nKN½ + eN~P~)/(nK+ ½NsP2) , 
and 

3 
c~. = - ;V~/(n~ + ½N3 P2)  , 

in which 

P~ = [ 4 N -  12+(1 /N)+(15 / ;W)] / [N-2] ,  

P2 = [ 8 N - 3 6 + ( 3 8 / N ) + ( 2 7 / N 2 ) - ( 4 5 / N 3 ) ] / [ N - 2 ] ,  

and ng is the number of terms in 2(c). I t  is seen that  
(26) becomes identical with (25) in the limit nK---> e, 
for N ~: 2. Furthermore, 

(i2= 1-(C~/N½)-(nKC2/N~) , (27) 

and lim ae = 0, as was to be expected. As Cochran has 
nK-->¢o 

noted, the fact that  a2=0 for infinite nK does not 
necessarily mean that  (25) or (26) will succeed in 
practical examples. In the numerical example de- 
scribed above, we would have ~2=0.82 for case (1) 
and a2=0"83 for case (2) if (26) were used for sign 
determination. Thus, it is clear that  (26) is superior 
to (22), but is still considerably inferior to the six- 
term formulae which were considered. 

N o t e  

Klug (1958) has recently discussed joint distributions 
of structure factors in considerable detail. He has 
obtained an expansion in terms of Hermite poly- 
nomials in which the terms are ordered such that  the 
coefficients are increasing powers of 1/N½ (in the case 
of equal atoms). A difficulty with this approach is 
that  it becomes intractable when applied to the joint 
distribution of a large number of structure factors. 
Also, from the point of view of regression formulae, 
Klug's arguments concerning order (the power of 1/N½) 
lose their validity when the number of structure 
factors is large because the least-squares coefficients 
of summations such as 2(c), 3(e), etc. (see Table 1) 
depend on n~ as well as N. The important considera- 
tion is the relation between n~ and some power of N. 
This point has been emphasized in a discussion of 
other regression formulae (Vaughan, 1958) and has 
also been discussed by Cochran (1958). 
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