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Regression Formulae and the Joint Distribution of Structure Factors
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The joint distribution (frequency) function of a set of structure factors can be obtained as an ex-
pansion in terms of a general set of orthogonal polynomials. The series given by Hauptman & Karle
and also by Bertaut is a particular example of such an expansion. The question is considered from
the standpoint of regression formulae and it is shown that the (terminated) sign-determining series
of Hauptman & Karle does not represent a least-squares regression formula. A method of obtaining
improved regression formulae is considered and illustrated in the case of space group P1. A numerical

example is presented for a synthetic structure.

Hauptman & Karle (1953) have proposed a method
of determining the signs of structure factors which is
based on the theory of probabilities. Specifically,
they assume that the atomic coordinates are random
variables which are uniformly distributed between 0
and 1 (for general positions). They then proceed to
derive formulae for the joint distribution of a group
of structure factors and show how this joint distribu-
tion forms the basis of a method of sign determination.
Bertaut (1955a, b) has also derived the joint distribu-
tion by a method which is similar to that of Haupt-
man & Karle and which can be expected to give
identical results provided the same terms are kept in
the terminated series.

In this discussion a general formula for the joint
distribution of normalized structure factors is given
and it is pointed out that Hauptman & Karle’s result
is a special case. The question as to the best statistical
means of phase determination will then be considered
from the standpoint of regression formulae. It turns
out that Hauptman & Karle’s results for the joint
distribution do not in general yield the best (least-
squares) regression formulae. This is because of the
lack of orthogonality of the individual terms in their
expansion. A discussion of regression formulae which
can be used to estimate Ey (%, k, [ even) in space group
P1 is given.

One method of investigating this problem is by the
method of orthogonal polynomials (see Cramer, 1946,
for a discussion of one-dimensional orthogonal poly-
nomials). A form of expansion of a function
g(x1, 22, ..., x,) of m variables in terms of one-
dimensional orthogonal polynomials is given by

n
= { 1 fi(x)) }
j=1

n
g1, ..., Zn) T Ogcﬂl),...,knﬂpj,kj(xi) s
=1

Els...

= 1)
, kn give the orders of
.+ kn,

in which the subscripts ki, ..
the polynomials p; ;(x;), »= total order=k; + .
and
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—00

xn).ﬂipl, k() ds . (2)
j=

The last equation follows from the orthonormality of
each set of polynomials ps,x;(zs) with respect to the
corresponding weight functions f;(x); that is

\ poyeipy @@ de=o, (=1,....m). @)
The conditions on the f;(x;) which make it possible to
determine the set of polynomials py, x;(2s) are discussed
by Cramer (1946) and Szegé (1939) The interval of
integration need not be infinite, as in (2) and (3).
It is also clear that orthogonal polynomials may be
found which are functions of all » variables. In this
case, the n-dimensional weight function can not gener-
ally be factored, as in (1).

Equations (1) and (2) can be used to obtain any
number of formal expansions of the joint distribution
function. The function g(z1, ..., ) is replaced by the
required joint distribution (frequency) function

P(dy,, ..., Ay,)
for the normalized structure factors Ey,, ..., Ey,.
Then (2) can be written
Cid.o vt = Hp,1(En)) 4)

in which the bar indicates averaging over all atomic
coordinates. Following Hauptman & Karle (1953), w
assume that the atomic coordinates are uniformly
distributed in the interval 0 to 1. The functions
fi(Ag;) can be any functions for which orthogonal
polynomials can be found.

In particular, if

fildn) = 5 exp [—34iy],

(2)

the orthogonal polynomials are the orthonormal Her-
mite polynomials,
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We then obtain

P4y, ..., Au,)= (-‘M)“%"ﬂ1
=

(o] n n 1
exp[~idh] 3 | HH,(Bw)| I 7 Hyldn)
k1y ... kpLi=1 j=1%:

= (3)
which is identical with Bertaut’s (1955b) equation
(III-1). Many equations similar to (5) can be obtained
simply by choosing different functions [i(4g;). The
question arises, which is best? One possible answer
can be found by considering regression formulae.

Regression formulae

Regression curves and formulae are discussed in
standard treatises on statistics (Cramer, 1946). If we
have a group of random variables 1, ..., ¥, then the
regression surface for y; is the locus of the mean value
of y1 subject to the conditions yo=as, ..., Yyn=12n;
that is, the equation
o0

2 P(xy, 2, ..
—00

x1=m1(x2,...,xn)=S . xp)dzy,  (6)
in which P(zi, ..., x,) is the joint probability distri-
bution function for yi, ..., ¥a, is the required regres-
sion formula. This gives the least-squares estimate of
y1, subject to the conditions ye==xs, ..., yn=2,. Let
us find the regression formula for the case in which
P(xy, ..., xz) is given by an expansion in orthogonal
polynomials, as in equation (1):

mi(x2, ..., Zn)

o]
)
koy ...
=0

=x1p1,1(3?1)~172f;‘ (x;) . Cg':)kg,...,knﬂpj,k,-(xj) , (7)
1= n 7=2

5

in which

Ci‘:)kz, ek =D, (xl).Hsz, 1 (%)) -
j=

This equation follows from the fact that 2;p; 4, (x;)=0
for k%1 if x; has a mean value of zero (which is as-
sumed). In the crystallographic application, x; can be
a normalized structure factor or an origin-invariant
combination of structure factors reduced to a mean

value of zero. The z;(5=2, ..., n) can be either By,
or (E'?;I).—- 1). If (7) is used for sign determination, the
sign of mi(xz, ..., 2,) will depend only on the sum of
polynomials if the functions f;(x;) are symmetric. The
Gaussian functions which appear in Hauptman &
Karle’s (1953) treatment are, of course, symmetric.

The difficulty of (7) is that, although it will provide
the best (least squares) estimate of yy if 2; (=2, ..., n)
are given, the speed of convergence of the series of
polynomials will be dependent on the particular weight
functions f;(x;) which are chosen. It has not been

demonstrated that Gaussian functions are particularly
advantageous.

Let us take another approach and assume a re-
gression formula to estimate z, as a function of a set
of observables z;(j=1, ..., n), of the type

r=m
T~ -Z Cg:?,...,knpgl),...,kn(xb '-':xn)s (8)
Bl eeoskn
=0
in which the P{) . are polynomials of total order
v=ki+...+ks and CF) . ,, are constants to be de-
termined. We assume that all possible, linearly in-
dependent, polynomials of total order equal to or less
than m are included in the summation. Thus, there
will be (v+n—1)!/»!(rn—1)! linearly independent poly-
nomials of total order » and a total of (n+m)!/n!m!
polynomials on the right side of (8).
We will assume best constants Cf)  , are given
by the least-squares principle; that is, we minimize
the mean square difference between the left and right
sides of (8). Straightforward minimization gives the
set of equations

v=m

= CE) .k,
LSy 2
=0
XPY k@ e ) PR (@1, -, 7)
=xP§?1),..‘,kn(x15 "':xn)7 (9)

in which the bar indicates mean value. Ordinarily,
one would have to solve this set of simultaneous linear
equationsin order to determine the constants Cf? . .
However, if the polynomials are orthonormal with
respect to a weight function which is the joint prob-
ability distribution function of the variables =z;
(j=1, ..., n), then (9) becomes

CR =P (1, (10)

] xﬂ) I
since

P%)’___’hz(xl, ey xn)ch'i;)’“”k'n(xl, ey :L‘n)
=6k1k’1' . .61‘%]:'"

in this case. The regression formula (8) then becomes

v=m
z =~ ZLxP%),...,kn(xli "-:xn)P%l),...,kn(xl’ L] xn) .
kls---s’n

2o 11)

The similarity between (11) and the summation on
the right side of (7) is obvious since p, ;(z;) is equal
to a constant times x; (since the mean of x; is zero).
Equation (11) is more general since the functions
P®) (@, ..., x,) cannot necessarily be factored,
as in (7). The situation is now clear. If (7) is used
with a finite number of terms, it will not generally prove
to be a satisfactory regression formula since the poly-
nomials Dj,x;(%;) (or their products) are not ortho-
gonal with respect to the joint probability distribution
function. In particular, the Hermite polynomials and
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their products are not orthogonal with respect to the
joint probability distribution function of a set of
normalized structure factors. Therefore, we can ex-
pect that it is possible to develop more powerful
equations than those presented by Hauptman & Karle
for the purpose of phase determination by starting
with equation (8) and using the least-squares principle
to determine the constants.

We must first discuss briefly what to use for the
quantities z; in crystallographic applications. At the
beginning of a structure determination, no signs have
been determined and we use the observed values of
[(Bg;|2—1), which fulfill the requirement of havmg
mean values of zero (we will assume, for convenience,
that there are no atoms in special positions; ap-
propriate modifications can be made in case this con-
dition does not exist). In the event that some phases
have been determined (by statistical means, by in-
equalities, or by structural requirements), the cor-
responding values of Ey; could presumably be used
with advantage. We shall not, however, consider this
more complicated situation. We shall assume that the
quant1t1es (|By;/2—1) are to be used to estimate some
origin- -invariant product of normalized structure fac-
tors, reduced to mean value of zero, which we shall
call G. For example, we might have

G=EH1EH2E-—H17H2_ EﬂlEHzEfﬂl—fh M

(For non-centrosymmetric structures, we may have
to consider G+ G*, in which G* refers to the inverted
structure).

One possible method of procedure would be to
construct a set of orthonormal polynomials from the
set (|Ey;|2—1). This can always be done, for example,
by the Schmidt method (Margenau & Murphy, 1943),
since all of the moments of these quantities can be
computed. Nevertheless, this is a difficult procedure
and we will begin with the equivalent procedure of
writing (8) in the form of a power series; that is put

PR (@

L xy)=ab. . xkn
and (8) becomes, on writing G for « and (|Egy;[®—1)
for z;:

r=m

5.
ki, .. kp

=0

G~

([ By = 1) (B, [P = 1) (12)

The constants C¢) ., can be determined by solving
equations (9). This also is a rather impractical proce-
dure and in order to obtain useful results without
excessive labor, we will make the following approx-
imations:

(i) All terms will be omitted from (12) for which
the covariances

G(|By, > —1)5. .. (|Eg,P— 1)

are zero.

983

(ii) All terms which have a common value for the
above covariance have the same coefficient in (12).

These approximations result in a great reduction in
the number of coefficients to be determined although
there is some loss in accuracy of the final results.

Regression formulae for Ey in space group ) 41

As an example, and to illustrate the suggested re-
gression calculation, all terms (v < 3) which give non-
zero covariance with Ey(h, k,1 all even) in space
group Pl are listed in Table 1, along with their co-
variances (with Ey) and variances for the case of vV
equal atoms per unit cell. The latter quantities (and
similar quantities which will be used later) have also
been obtained for the case of unequal point atoms;
they are polynomials of the quantities
N N
Sn=2 g7} (Bg=2 g exp [2niH - 1}]),
1 1
and in some cases are quite lengthy. The regression
formula using these terms would be
H & Z C;‘ Ti? s (13)
j
in which 7'f are the quantities listed in the second
column of Table 1. The coefficients C; would be found
by solving the equations
S CTYTH =ExTE. (14)
j
This is still a rather formidable task but it is within
the range of modern electronic computers.

Some approximations have been made in evaluating
the variances and covariances listed in Table 1. It will
be noticed that some of the terms listed contain others
as special members. For example, term 3(¢) is the mem-
ber of 3(e) for which K =1H. For theoretical purposes,
such members can be considered as omitted from the
terms which are sums. Furthermore, the member for

which K=0 is not included in these sums. The vari-
ances of the sum terms

Ty=2taxk
K
have been evaluated from the relation

TH—-(ZtHK)2 Bx+ 2 bk ks

K1, Kg

~ nKtlz-I,K+nK(nK_ 1)ty g, ta, k.- (19)

The average ty k, 1k, has been evaluated for general
values of K; and K». For some particular values of
K, and K., for example if Ko=1Ki, this quantity is
sometimes different from that given in Table 1. The
resulting additional contributions to T3 have been
neglected. It will be noted that the second term in (15)
is, in general, not small compared to the first; this
illustrates the non-orthogonality of the members of
these sums.
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It is possible to gain some idea of the reliability of
(13) by assuming that

7
has a Gaussian distribution. We first note that

7 i

Then it follows from the assumption of a Gaussian

distribution that

P.=}+}tanh (B 2 C,TRY0”)  (17)
i

is the probability that Ey and
=0,1¢
7
have the same sign.
It is obvious that regression formulae can be ob-

tained from any single term in Table 1 or any group
of terms. If a single term is used, we have

By~ (EHTH/T—I?{) Ty,

0?=1—(EyTy)*/Th .

(18)
and

(19)

Thus, the numerical values of (EyTy)%/T% provide
an initial estimate of the relative importance of the
various terms in Table 1 in determining the sign of Ey.

Four of the terms listed in Table 1 have non-zero
mean values. These are

2(a)=2—(3/N),
(@)

3(d)=nxl(4/N)—(7/N?)],

(h)=8—(36/N)+ (40/N2) ,
3(j)=(6/N)—(11/N?) . (20)

If any of these terms are used in a regression calcula-
tion, the corresponding mean values should be sub-
tracted from them in applying equations (13) and (14).

Tables similar to 1 can be obtained for other
invariants of space group P1 and for invariants of
other space groups. In fact, a regression formula for
determining the phase (or sign) of By, By, B _u, u,
for space groups P1 and P1 has already been presented
(Vaughan, 1958). Extension can also be made to any
desired order. However, the evaluation of the co-
variances and variances, as well as the solution of the
resulting set of linear equations, becomes increasingly
more difficult. A means of finding terms which give
non-zero covariance with any invariant of any space
group will be discussed in a later communication.
Bertaut (1955) has given a discussion which applies
to this problem.

A numerical example

To show how a regression formula can be obtained
from the terms listed in Table 1, and to demonstrate
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the possible utility of such an equation for sign deter-
mination, a numerical test has been made with a
synthetic structure. A two-dimensional structure was
considered with eight equal atoms at the positions

+ (z, y) = (0162, 0-389), (0-307, 0-233),

(0568, 0-214), (0-794, 0-418) .

In constructing regression formulae, only terms
1(a), 2(b), 2(c), 3(b), 3(e), and 3(g) in Table 1 were used.
The principal reason for disregarding terms was, of
course, to keep the calculations within reasonable
limits. In selecting these particular terms, considera-
tion was given to the expected magnitudes of

(ByTy)/Th; also, terms were omitted which seemed
to be only higher orders of terms which were included.
It is admitted that the best choice of terms may not
have been made. In carrying out the calculations, it
was assumed that all values of (|[Ey[2—1) were known
within the limitations [2]| < 10, |k] < 1

In order to construct regression formulae it was
necessary to evaluate the covariances between the six
terms which were used. These were computed from
the following equations:

1(a)2(b) = [1/N][6— (11/N)]
1(@)2(c) = [nx/N]1[4—(1/N)]
1(a)3(b) = [nx/N2][12—(23/N)]
1(a)3(e) = [nx/N?][10— (19/N)]

(a)3(g) =
2(6)2(c) = [nx/N2][10—(19/N)]

( [2nk/N?][1 —(2/N)]
(

2(0)3(b) = [nx/N1[8+(22/N)— (259/N?)+
(
(

(368/V3)]

Il

2(6)3(e) = [nx/N?][72— (364/N) + (440/N2)]

2(c)3(b) = [1mam2/N3][20— (39/N)]
+[nfz/N][18 — (10/N) — (59/N2) +(96/N3)]
+[n3:/N3][32 — (63/N)]

2(c)3(e) = [mine/N3][18—(36/N)]
+[nfy/ N][12— (40/N) + (33/N?)]
+ [/ N [8+ (22/V) — (223/N2) +

2(c)3(g) = [mine/N3][4— (8/N)]
+[nis/ N2 [48 — (236/N) + (280/N2)]

3(0)3(e) = [mans/N3][8 + (12/N)— (55/N?)]
+ [ng3/ N2][24 + (42/N) — (611/N2) + (864/N?)]
+ [/ N2][16 + (90/N) — (T11/N2) + (936/N3)]
3(5)3(9) = [mune/N3][144 — (748/N) + (920/N2)]
+[ng/ N2][128 — (480/N) — (360/N2) + (1616/N3)]
3(e)3(g) = [mans/N3][8 — (28/N) + (24/N2)]
+[n&/N][32— (8/N) — (1148/N2)
+(3864/N3) — (3584/N4)] .

(296/N%)]

2L
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In this tabulation, nx, n1, and ns stand for the number
of members in a sum term, the latter two being used
for the cases in which two sum terms are involved.
The symbols nf;, n3;, and nd refer to the number of
cases for which K; =K, K;= —Kjs, and K;= 4+ Ky, in
a double summation over K; and K2; these were the
only special terms which were considered. Again,
approximations similar to those described in connec-
tion with Table 1 were used.

Since the number of terms which are used to com-
pute the terms 2(c), 3(b), 3(e), and 3(g) enter into the
determination of the coefficients in a regression for-
mula, one would ideally have to compute different
coefficients for almost every H for which one wished
to determine a sign. However, for any given set of
structure factors these numbers vary within rather
restricted limits, and only two sets of coefficients were
actually determined in this numerical example. The
cases to which these coefficients apply are defined in
the following way.

Case (1): ng for 2(c)>163, ng for 3(b)>114
Case (2): nk for 2(c) <163, nx for 3(b) <114,

It is to be noted that nx for 3(g) is always one less than
ng for 3(b), and nx for 3(e) is invariably 119. The
numbers nx which were actually used to compute the
coefficients for these two cases were the average
values taken over all H for which the corresponding
inequalities are satisfied, and for which |Ey|> 1-00.
Thus, the following numbers were used.

Case (1): nx for 2(c)=178, nx for 3(b)=139,
ng for 3(e)=119, nx for 3(g)=138
Case (2): nx for 2(c)=152, nx for 3(b)=96,
ng for 3(e)=119, nx for 3(g)=95.
The values for nf;, np, and nf were estimated aver-

ages. Equations (14) were solved for each of these two
cases.

Case (1): Zg=1-048[1(a)]—0-1337[2(b)] — 0-02147[2(c)]
+0-004136[3(b)] + 0-009297 [3(e)] + 0-005094 [3(g)]
0?=0-622 .

Case (2): Dy =09256[1(a)]—0-06482[2(b)]
—0-02237[2(¢)]+ 0-005204 [3(b)]+ 0-01037[3(e)]
+0-003525[3(g)]
02=0-657 .

These equations give Xy, a least-squares estimate
(approximately) of Ey with variance ¢2. These equa-
tions were used to compute Xy for all H such that
|Eg| = 0-5. The results for all cases for which |Eg| > 1-0
are given in Table 2. Column 10 in Table 2 gives the
results of the application of equation (17), and gives
the (approximate) probabilities (P+) that 2y and Ey
have the same sign. It will be noted that in eight
cases P. is greater than 0-95, and in the only case
of an incorrect sign determination (8,8) P is only
0-61. There are, of course, a number of examples for
which sign determinations would have to be con-
sidered unreliable because of low values of P,. In
only one case (0,10) was a sign reliably determined
for which 0-5 < |Ey| < 1-0; in all other examples in
this category P was less than 0-8, although the sign
of 2y was the same as that of Ey in twelve out of
seventeen cases. In none of the fourteen cases for
which P.>0-7 was the sign of Ey incorrectly deter-
mined by Zy. Although these results may well be
partly fortuitous, they do provide some evidence that
the six-term regression formula is useful and that the
estimates of P, are reasonably conservative.

It is of interest to compare the results obtained with
the six-term regression formula with other methods of
sign determination. Karle, Hauptman, Karle & Wing
(1958) have used Ef;;—1 to determine the sign of Ey.
The regression formula obtained with this one term is

Table 2. Sign determinations with siz-term regression formula

Terms in regression formula

Rk 1(a) 2(6) 2(c) 3(6) 3(e)

4,10 —0-99 —4-66 -233 —801 —14-9
8,2 +0-66 +2:59 + 91 +667 +16-4
8,0 —0-99 —2.92 — 224 — 894 —19-2
2,6 —0-99 —2:58 -554 — 554 +30:0
4,10 4055 +1-20 — 82 +28-4 +158
0,6 —0-89 —1-83 - 79 —59-1 +155
8,6 +0-58 +1-09 +20-3 +18:6 - 54
10,6 —1-00 —1-88 —124 —271 —13-2
6,8 1-0-25 +0-30 — 22 + 76 +231
44 —0-99 —1-18 —44-9 —37-4 +374
4,8 —0-93 —1-06 —11-9 —29.2 —16:8
10,4 +0-45 +0-36 +11-8 + 79 +17-3
8,4 ~0-70 —0-50 - 38 —~18:0 +156
6,4 —1-00 —0-70 —27:5 - 19 +18-6
8,8 +1-19 +0-39 +37-8 +153 — 23
6,2 —0-91 —0-15 —30-0 +19-3 +21-9
0,10 +4-12 —0-37  +1131 — 430 —39-4

Ey~ N}@2N -3y (B}),—1), (22)
with
P (product)
/_—’—
3(g) ZH Ey ExZu  Eul(a) Case
— 68 —0-69 —2-39 0-993 0-75 2
+24-2 +0-71 +2-22 0-993 0-67 1
+12-8 —0:65 —-—1-99 0-985 0-72 1
—366 +036 +1:00  0-901 0-71 1
+13-6 +0-97 +1-79 0-995 0-61 2
+10-2 —0:57 —1-78 0-964 0-68 1
— 26 +0:05 +1-70 0-56 0-61 2
+27-1 —-0-71 —1-70 0-975 0-69 2
+16-3 +0-14 +1-49 065 0-54 2
—155 +0-20 +1-48 0-72 0-67 1
+ 2-0 —0-85 —1-46 0-977 0-66 2
+12-2 + 0-40 +1:35 0-88 0-57 2
+21-7 —0-40 —1:31 0-87 0-61 2
+13-3 —013 —1-30 0-63 0-65 1
—44-4 +0-13 —1-16 0-61 0-66 2
+23-3 +0-12 +1-08 0-60 0-61 1
—26-7 +1-26 +0-96 0-980 0-87 1
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02=(2N —4)/(2N —3)=0-923 for N=8. (23)
Equation (17) would then become
Pi=}+} tanh {|Ex(Bf— 1)I/[[N}2—@/N)]}, (24)

which is the same as the formula of Cochran & Woolf-
son (1955) if the term 4/N is omitted. This term should,
of course, be included since P:=1 exactly for N =2.
The results of applying (24) to the numerical example
described above are given in column 11 of Table 2.
The improvement obtained by using the six-term
formulae is seen to be considerable. It should, of
course, be remembered that the joint distribution of
Ey and Eg;,—1 is not very close to being Gaussian.
Thus, the estimates obtained from (24) are probably
rather crude. We note, for example, that the sign of
Ey,0 is actually positive with probability 1 because
of the Harker-Kasper inequality Uy > 2Ufp—1.
Within the limitations |&| < 10, k| < 10, the signs of
only Ey 1o and Eyg 5 can be determined to be positive
with this inequality.

Another interesting formula is that due to Cochran
(1954),

EH= Nt [2(E?1/2 - 1) - N(E%H/2)—K_ 1)(E%< - I)K] ’ (25)

in which the bar indicates averaging over K. This
equation is valid if all the K vectors are included in
computing this average. An equation resembling (25)
can be obtained by considering a two-term regression
formula (see Table 1),

Ey ~ Ci[1(a)]+Ca[2(c)] . (26)

The values of C; and C: determined by least-squares
minimization are

Cy = (2ng N} +1N%Py)/(ng+3N3Ps),
and

Cs = —N%/(nk+3N3Ps),
in which

Py, = [4N —12+(1/N)+(15/N?)]/[N—2],
Ps = [8N — 36+ (38/N) + (27/N2) — (45/N3)])/[N —2],

and nx is the number of terms in 2(¢). It is seen that
(26) becomes identical with (25) in the limit nx — oo
for N 2. Furthermore,

o?=1—(C1/N*¥) — (nxC2/N*?), (27)

and lim 02=0, as was to be expected. As Cochran has
nE->0
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noted, the fact that ¢2=0 for infinite nx does not
necessarily mean that (25) or (26) will succeed in
practical examples. In the numerical example de-
scribed above, we would have ¢2=0-82 for case (1)
and ¢2=0-83 for case (2) if (26) were used for sign
determination. Thus, it is clear that (26) is superior
to (22), but is still considerably inferior to the six-
term formulae which were considered.

Note

Klug (1958) has recently discussed joint distributions
of structure factors in considerable detail. He has
obtained an expansion in terms of Hermite poly-
nomials in which the terms are ordered such that the
coefficients are increasing powers of 1/N# (in the case
of equal atoms). A difficulty with this approach is
that it becomes intractable when applied to the joint
distribution of a large number of structure factors.
Also, from the point of view of regression formulae,
Klug’s arguments concerning order (the power of 1/N?#)
lose their validity when the number of structure
factors is large because the least-squares coefficients
of summations such as 2(c), 3(¢), etc. (see Table 1)
depend on nx as well as N. The important considera-
tion is the relation between ni and some power of N.
This point has been emphasized in a discussion of
other regression formulae (Vaughan, 1958) and has
also been discussed by Cochran (1958).
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